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then D. is also congruent to a diagonal matrix of the stated form. From the law of 
inertia ([1], p. 296-298) D, also has p positive and q negative elements and the 
proof is complete. 

From this result Theorem 1 follows as a corollary since, if w(x) is nonnegative, 
C. is positive definite and therefore congruent to a diagonal matrix with n positive 
elements. 

As a simple example consider a 2-point quadrature formula of the form 
1 

(3) (3 -5 1 x I)f(x) dx Alf(xi) + A2f(x2). 

For this weight function the monomial integrals are c0 = 1, Cl = 0, c2 = -1/2, 
C3 = 0. There are no real values of xl, x2 for which (3) can be made exact for 
f(x) = 1, x, X2, X3. There are, however, an infinity of such formulas with real xi, 
x2 which are exact for f(x) = 1, x, x2 and Theorem 2 still applies. One such formula 
is 

X1 = 2 X2 = 

Al= 2 A2= -1. 
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A Partition Problem 

By M. H. McAndrew 

1. Introduction. The following theorem is proved: Given integers a, b, c, d, 
each ?2, then either there exist integers m, n with m - n I < 1, a partition of a into 
m parts of which each part is coprime to b, and a partition of c into n parts, each part 
coprime to d; or the same conclusion holds with the roles of a and b reversed and the 
roles of c and d reversed. 

This question arises in the investigation of the minimum length of input strings 
required to distinguish two partial automata. Elgot and Rutledge [1] deduce an 
upper bound for the length of such strings and by using the theorem quoted above 
show that this upper bound can be attained. In Section 4 we demonstrate by an 
example that the restriction "a, b, c, d > 2" cannot be relaxed. 

2. Preliminary Lemmas. In the sequel, all variables are to be taken as strictly 
positive integers. 

LEMMA 1. If 1 > 1, 1 = JJi=, Pi where the pi are distinct primes, and if m is 
even, then there is an a such that 

(a, I) = 1, 

(m - a, I) = 1. 
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Proof. For each i the congruences 

ai # O (mod pi), 

ai O m (mod pi) 

have a common solution. For if pi = 2 then as = 1 is a solution; otherwise, pi >- 3 
and equations (1) eliminate at most 2 of the pi congruence classes mod pi. 

Let a _ ai (mod pi); by the Chinese Remainder Theorem such an a exists 
(unique mod 1). Clearly a satisfies the conclusions of the lemma. 

LEMMA 2. If p is a prime > 5, then for any a, m, 1, with (1, p) = 1, there is a b 
such that 

(2) b a (mod 1), 

(3) 1 ? b < 31p/5, 

(4) (b, p) = (m-b, p) = 1. 

Proof. Let xr = a + rl. At least p - 2 of the integers xi , X2, * , * , satisfy 

xy # O (mod p) 

and xr. O m (mod p). 

Let yl, Y2, *, y2 be the least positive residues (mod ip) of any p - 2 of such 
solutions. Let b = Min (yi). Then clearly equations (2), (4) are satisfied and 

1 _ b < 31, 

? 31p/5, since p ? 5. 

LEMMA 3. If t = lI=1 pi where the pi are distinct primes with Ps _ 5, and if m 
is even, then there is a b such that 

(by t) = 1, 

(m- b t) = 1, 

and 

1 ? b ? 3t/5. 

Proof. If s = 1, the result follows from Lemma 2 with a = I = 1. If s > 1, the 
result follows from Lemmas 1 and 2 with 

H-i 

Definition. We define "a is P,(b)" to mean "There exist a,, a2, ***, a, such 
that a = -Zr al and (as, b) = 1 (i = 17 * r). 

LEMMA 4. If m is an even integer ? 6 and m ? 3n/5 then m is P2(n). 
Proof. Let n = fJ=l p~' where the pi are distinct primes. Let t = fl pi 

and suppose, without loss of generality, pr = Max(pi). We consider two cases. 
(a) P7 > 5. Let b be defined as in Lemma 3. Then 
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1 < b < 3t/5 

< 3n/5, by definition of t 

< my by hypothesis 

< m, since (m-b, n)=l. 

Therefore, c = m - b is a positive integer; i.e., since m= b + c, m is P2(n). 
(b) Pr < 5. Now t = 1, 2, 3 or 6. It may be verified that at least one of the par- 

titions m = 1 + (m - 1) or m = 5 + (m - 5) must have both parts prime to t. 
The result now follows. 

LEMMA 5. If m >_ 2, n ? 1 and 

either (a) m ? 3n/5 + I and (m, n) 4 (5, 6), 
or (b) in ? (3n + 8)/5, 
or (c)m>n,- 

then m is either P2(n) or P3(n). 
Proof. (a) If m is an even integer > 6, then M is P2(n) by Lemma 4. If m is an 

odd integer > 7, then mi- 1 is an even integer ? 3n/5 and hence m - 1 is P2(n) 

by Lemma 4; i.e., m is P3(n). The cases m = 2, 3, 4, 5 may be settled by inspec- 
tion of the following partitions: 

2 1 + 1, 

3 1 + 1 + 1, 

4=2+2=3-1 (n<5/3(3) =5), 

5 =3+ 1 + 1= 2+2+ 1 (n 5/3(4) < 7). 

(b) If (in, n) # (5, 6) the result follows from (a). If (m, n) = (5, 6) then m < 

(3n + 8)/5. 
(c) If n > 3 then m _ n > 3n/5 + 1 and the result follows from (a). If 

n = I or 2, the result follows since in - (mr-1) + 1 = (mi- 2) + 1 + 1 and 

either in - 1 or m - 2 is odd. 

LEMMA 6. If i > w ? 2 and a ? w + (3v - 2)/5 then a is either P,,(v) or 
Pqt +l (V ) - 

Proof. 

A=1+ 1+ *1+ (u-w + 2) 
w - 

w-2 

and (a - w + 2) ? (3v + 8)/5, by hypothesis. Hence, by Lemma 5(b), 

(i - w + 2) is either P2(v) or P3(v). Therefore, t is either P,(v) or P,(v). 

3. Main Theorem. 

THEOREM 1. If a, b, c, d satisfy 

(5) a, b, c > di _ 2 

then for some mi, n with i m- n < 1, either a is Pm(b) and c is P (d), or b is Pm(a) 
and d is P (c). 
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Proof. Suppose the theorem is false. We shall deduce a contradiction. We con- 
sider two cases. 

(i) Either (a, b), (b, a), (c, d) or (d, c) = (5, 6). Suppose, without loss of 
generality, (a, b) = (6, 5). Now 6 = 4 + 2; hence 6 is P2(5). Therefore c is not 
P2(d) or P3(d). By the converse of Lemma 5 (c), d > c; i.e., 

(6) d > c + 1. 

Now 6 = 3 + 3 = 3 + 2 + 1 =3 + 1 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 
1 + 1 + 1 + 1 + 1; i.e., 6 is P2(5), P3(5), P4(5), P5(5), P6(5). Now c is P,(d), 
trivially. Therefore 

(7) c > 8. 

Finally 5 is P5(6), trivially; hence d is not P4(c) or P5(c). Therefore, by the con- 
verse of Lemma 6 withu = d, v = c, and w = 4, 

(8) d < (3c + 18)/5. 

From (6) and (8), 

c + 1 < (3c + 18)/5, 2c < 13, 

which contradicts (7). 
(ii) None of (a, b), (b, a), (c, d), (d, c) = (5,6). Without loss of generality, 

suppose a _ b. Then by Lemma 5(c) a is either P2(b) or P3(b). Hence c is nei- 
ther P2(d) nor P3(d); by the converse of Lemma 5, 

(9) c < d, 

(10) c < 3d/5 + 1. 

Similarly from (9) we deduce 

(11) b < a, 

(12) b < 3a/5 + 1. 

Suppose without loss of generality, a > d. In (10) 

(13) c < 3a/5 + 1. 

From (12) and (13) 

3b + 5c < 3(3a/5 + 1) + 5(3a/5 + 1) 

< 25 !,4a + 8 

< 5a + 8 

< 5a + 7. 

i.e. a > (c - 1) + (3b - 2)/5. Hence, by Lemma 6, a is either P,-1(b) or P,(b). 
Now c is P,(d) trivially; hence we have the required contradiction. 

4. Remark. The following theorem shows that Theorem 1 is best possible in that 
condition (5) cannot be relaxed. 

THEOREM 2. For arbitrary K there exist a, b, c, d, with 
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a = 1, 

b, c, d, > K 

and such that the conclusion of Theorem 1 is false. 
Proof. Let b = N, d = 2m - 2, c = 2-r(d!), where r is chosen to make c an odd 

integer. Clearly a is P,(b) only for s = 1. Now c is not Pi(d), provided d > 3, and 
not P2(d) since an odd integer cannot be the sum of two odd integers. Hence, we 
cannot find partitions of a, c satisfying the conclusions of Theorem 1. 

Suppose d is P, (c). Then 

d = di + d2 + *-+ d, 

where each di < d and (di, c) = 1. Now c is divisible by all odd integers < d; 
therefore di is a power of 2. I.e., 

(14) d = 2r1? + 2r2 + ... 2r8 

Since d = 2M - 2 there are at least ll - 1 summands in (14). I.e., if d = P,(c), 
then s > l - 1. But clearly if b is P8(a), then s _ N. If we now choose Ml - 1 > 
N + 1 and MLl, N large enough to ensure b, c, d > K, the conclusion of Theorem 2 
follows. 
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Approximations to Kelvin Functions 

By F. D. Burgoyne 

While preparing a digital computer program to examine the behavior of large- 
taper hub flanges, it was found necessary to use approximations to the Kelvin 
functions ber x, bei x, ker x, and kei x, and to their first derivatives. To obtain 
full machine accuracy, the approximations were required to be correct to nine sig- 
nificant figures. Several tabulations of these functions exist, but the only ones 
considered to be sufficiently accurate were those of Lowell [1] and Nosova [2]; 
however, limitations of internal memory in the computer used precluded the pos- 
sibility of storing such tables and interpolating. 

The functions actually required were Z(x) and Zi' (x) (I < i _ 4), where 

Zi(x) = ber x 

Z2(X) = -bei x 

Z3(X) = - - kei x 

Z4(x) = - - ker x; 
Rr 
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